
Bear Valley Parkway

Temp DLN :\1086\ &Ewk\Tentative Map\Bear Valley Pkwy Date: 2/19/13 2-18-13

Job: Bear Valley Parkway Units: Ft-CY Tue Feb 19, 2013 09:01:23 Page 1

Volume Report Design vs. Existing

Job Site

PRELIMINARY DEVELOPMENT

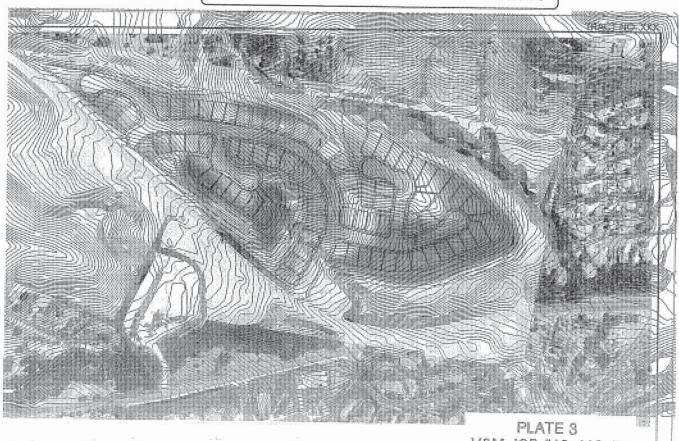


PLATE 3 V&M JOB #13-116-P

County Of Escandado Treat BEAR VALLEY FRWY

	PR	IMARY	DIVISIO	NS	500	GRO! SYME	2000 H		SEC	CON	DARY DI	VISIONS				
SIAL		1	BRAVELS		CLEAN GRAVELS	GW	V	Well grade	ed gravels	, grav	rel-sand mixt	ures, little or no	fines.			
SOILS MATERIAL O. 200			E THAN HA	33.50	(LESS THAN 5% FINES)	GP)	oorly gra	ided grave	ls or	gravel-sand	mixtures, little o	or no fines.			
COARSE GRAINED SOILS RE THAN HALF OF MATER IS LARGER THAN NO. 200	п	FR	ACTION IS		GRAVEL	GN						non-plastic fin				
GRAINED HALF OF 3 THAN N	1715	110000000000000000000000000000000000000). 4 SIEVE		WITH FINES	GC						res, plastic fine				
GR, HAL	EVE E		SANDS		CLEAN SANDS	SW	-					le or no fines.				
COARSE RE THAN S LARGE	70		THAN HA	ALF	(LESS THAN 5% FINES)	SP	_					s, little or no fin	es.			
COA RE TI S LA		FR	ACTION IS		SANDS	SM					ures, non-pla					
CO MORE IS L		E 55,933	LLER THA	N	WITH FINES	SC		5 NA 1.00 C.			nixtures, plas					
	17E		011.70			ML	-	norganic s	silts and ve	erv fir	ne sands, roo	ands, rock flour, silty or cla				
FINE GRAINED SOILS MORE THAN HALF OF MATERIAL IS SMALLER	E V E		SILTS A	LIMI	T IS	CL	.	norganic c		w to r	nedium plast	slays, sandy				
NED AN H IS SI	0		LESS T	HAN	50%	OL	. (-		low plasticity.				
FINE GRAINE MORE THAN I MATERIAL IS S	V	+	SILTS A	ND CL	_AYS	МН		norganic s		eous		eous fine sand	y or silty			
FINE G MORE THAN NO			LIQUID	LIMIT	r IS	СН	1 11			144	sticity, fat cl	avs.				
m >∑}	È		GREATER	IAHT	N 50%	ОН	-		ganic clays of medium to high plasticity, organic silts.				ts.			
	HIGH	LY ORG	ANIC SOIL	S		PT	_		ther highly			1				
	GRA	IN'SIZE	S U.S. ST	TANDA	RD SERIES SIEV	_L E						RE SIEVE OPEN	VINGS			
		20			40	10			4		3/4"		12"			
SILTS AN	AND CLAYS SAND			SAND					GRA	VEL	COBBLES	BOULDER				
			FINE		MEDIUM		COA	RSE	FINE		COARSE	TOODBEES	BOOLDEN			
		RELA	TIVE DEN	SITY					CON	SIST	ENCY					
		RAVELS STIC SI		BLOW	/S/FOOT			S AND	s ;	STR	ENGTH	BLOWS/F0	ООТ			
	VERY	LOOSE			0 - 4		VER'	SOFT		0	- 1/4	0 - 2				
		OSE			4 - 10		S	OFT		1/4	- 1/2	2 - 4				
		M DENSE	V.		0 - 30		F	RM		1/2	- 1	4 - 8				
	DE	NSE			0 - 50		S	IFF		1	- 2	8 - 16	si (1			
	VERY	DENSE		OV	ER 50		VERY	STIFF		2	- 4	16 - 32				
							Н	ARD		OV	ER 4	OVER 32	2			
▼ Sand	Juconii	ned cor e Test	mpressive	strer Bulk		TEST p	ocket Sta with	penetro ndard Pe blow c	ometer (enetration	CL-7 on To er 6	00 est (SPT) inches	(ASTM D-15	586)			
						7 -6						its per 6 inc				
VINJE & MIDDLETON ENGINEERING, INC. 2450 Auto Park Way						Uni	fied	Soil Cla	assifica	HA1	ORY BO	ORING LO	GS)-2487)			
			92029	100	29	PROJ	JECT N	0.			Т	en ann ann an ann an an an an				

13-116-P

KEY

	NJE & MIDDLETON ENGINEERING, INC.				T: TF	P-1
	oposed Residential Subdivision CLIENT: Speith & Woh					
PROJECT NUM	/IBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Es	condid	o (APN'	s 237-	131-01	& 02)
	d:2/28/13 Logged By:SJN Caterpiller 420 Backhoe	М	-			
- 1	caving. No groundwater.					
	ournig. To gloundwater.		,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
SM	COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Damp. Loose. ST-1					
- 2 -	Sandy silt to sandy clay. Red brown color. Moist. Soft to loose. Plastic. ST-2	- T	14	104	79	56
CL-ML				,		
	BEDROCK (Kgb):					
- 6 - SW-	Gabbroic rock. Fine to medium grained. Red brown color. Weathered. Friable. Massive. ST-3					
	Becomes blocky at 7 feet. Dense.		12		Sample Disturbe	
n /A	Bottom of test pit at 7.5 feet.					
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	4		Touristic Indiana (Carana California (Carana)

VIN WIN	IJE & MIDDLETON ENGINEERING, INC.		TES	T PI	T: TF	>-2
PROJECT: Pro	pposed Residential Subdivision CLIENT: Speith & Wohl	ford, In	IC.			
PROJECT NUM	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondido	(APN's	s 237-	131-01	& 02)
Date Excavated	l:2/28/13 Logged By:SJM Caterpiller 420 Backhoe	1	_			
Remarks: No c	caving. No groundwater.					-
GRAPHIC LOG LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
SM-SC	COLLUVIUM (Qcol): Silty to clayey fine to medium sand. Brown to red brown color. Damp. Loose. ST-1					
- 4 - 			7	105.8	77	29
- 6 - SW- GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Red brown to grey color. Weathered. Friable. Massive. Dense. Excavates gravelly. ST-3					
	Dottom of test wit at 7.0 fact		4	136.7	100+	38
	Bottom of test pit at 7.0 feet.					
BULK SAMPLE	CHUNK DENSITY ☐ GROUND WATER		PLATE	5		Bennentenberkanssenson er vin vin det deserberte

VINJE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	- 3
PROJECT: Proposed Residential Subdivision CLIENT: Spei					
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley	Pkwy, Escondid	o (APN'	s 237-	131-01	& 02)
9990 9 101E	SJM	-			
Remarks: No caving. No groundwater.					
DEPTH (ft) PS O O O O O O O O O O O O O O O O O O	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Damp. Loose. S SM	ST-1				
BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Red brown to grey Weathered. Friable. Massive. ST-3	y color.				
GP GP		8	128.1	98	58
Excavates somewhat blocky to gravelly at 6 feet. Dense.					
Bottom of test pit at 7.0 feet.		J			
BULK CHUNK DENSITY GROUND SAMPLE SAMPLE TEST WATER		PLATE	E 6		

TWW VIN	JE & MIDDLETON ENGINEERING, INC.		TEC	T DI	T: TF) A
	pposed Residential Subdivision CLIENT: Speith & Wohl	ford. In				-cp
	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc					& 02)
A I	l:	1	_			
	caving. No groundwater.					
(#) HTGAPHIC LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
SM - 2 -	COLLUVIUM (Qcol): Clayey sand. Red brown color. Moist. Soft to loose. Low plastic. ST-2					
- 4 - SC- CL	Clayey sand / sandy clay (residual soil). Red brown color. Moist. Firm to stiff. Low - medium plastic. ST-4					
SW- GP	BEDROCK (Kgb):			5		
	Gabbroic rock. Fine to coarse grained. Red brown color. Weathered. Blocky. Dense. ST-3		6	138.7	100+	61
8 -	A mining excavation was encountered at 4-6 feet below the surface. The mining excavation appears to be an adit and measures approximately 7 feet wide and approximately 6 feet high. The excavation is trending N75E, and may be descending slightly in a northeast direction.					
-10-						
SW- GP	Gabbroic rock. Dense.					
	Bottom of test pit at 13.0 feet.					
BULK SAMPLE	CHUNK DENSITY GROUND WATER	e du la francia de la constitución de la constituci	PLATE	7		

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NJE & MIDDLETON ENGINEERING, INC.	Angle The Print Street	TES	ST PI	T: TF	P-5
PROJECT: P	roposed Residential Subdivision CLIENT: Speith & Wohl	ford, Ir	ıc.			
PROJECT NU	MBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondido	(APN	s 237-	31-01	& 02)
	ed:2/28/13 Logged By: SJM Caterpiller 420 Backhoe	ſ	-			
	caving. No groundwater.					
GRAPHIC LOG LOG. C.S. C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- 2	COLLUVIUM (Qcol): Clayey sand. Red brown color. Moist. Soft to loose. Low plastic. ST-2					
sc	Becomes somewhat blocky and medium dense at 2.5 feet.		13	112.7	86	64
- 4 -						
SM	Silty fine to medium sand. Brown color. Moist. Somewhat blocky. Medium dense. ST-1		15	116.7	84	82
- 8 - GP	BEDROCK (kgr): Granitic rock. Fine grained. Tan to reddish color. Fractured. Includes quartz veins. Local polished surfaces. Dense. Excavates blocky to gravelly. ST-5					
10			14	119.6	91	81
-16 ×///	Bottom of test pit at 10.0 feet.		J			
BULK SAMPLE	CHUNK DENSITY GROUND SAMPLE TEST WATER	THE RESERVE OF THE PERSON NAMED IN COLUMN	PLATE	Ξ 8	TO STATE OF THE ST	AUSTI MODELLI PER SALA

VINJE & MIDDLETON ENGINEERING, INC.		TES	T PI	T: TF)-6
PROJECT: Proposed Residential Subdivision CLIENT: Speith & Wohlf	ord, In				
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondido	(APN's	s 237-1	131-01	& 02)
Date Excavated:					
	,				
DEPTH (ft) PO S S S S MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
COLLUVIUM (Qcol): Silty fine to medium sand. Red brown color. Moist. Loost to firm. ST-1 SM BEDROCK (Kgb): Gabbroic rock. Fine to medium grained. Red brown color. Weathered. Friable. Massive. ST-3					
Becomes somewhat blocky to gravelly at 7 feet. Dense.		5	132.0	100+	41
Bottom of test pit at 7.5 feet.					
BULK CHUNK DENSITY GROUND SAMPLE SAMPLE TEST WATER		PLATE	9	Allendrich Bellemantschler sich eine Allendrich Bellemantschler sich der Stellen der Stelle Bellemantschler sich der Stelle Bellemantschlieben sich der Stelle Bellemantschlieben sich der Stelle Bellemantschlieben sich der	

	VINJE & MIDDLETON ENGINEERING,				T PI	T: TF	-7
PROJECT	Proposed Residential Subdivision	CLIENT: Speith & Wohlfo	ord, In	c.			
PROJECT	NUMBER: 13-116-P PROJECT LOCATION: 60	31 Bear Valley Pkwy, Esco	ndido	(APN's	s 237-	131-01	& 02)
Date Exca	vated:2/28/13	Logged By:SJM		2			
Equipmen	: Caterpiller 420 Backhoe		-				
Remarks:	Caving within fill deposits. No groundwater.						
<u> </u>	ró l			₩-	۲۵	ш	F Z
GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	FILL (af):						
- 2	Sandy clay / clayey sand. Brown color. Mo Significant caving of the sidewalls until bed Appears to be a mining excavation (shaft).	rock is exposed.					
	Gabbroic bedrock is exposed at 3 feet belo sides of the excavation. The shaft appears measures approximately 9 feet by 9 feet sq	s near vertical and					
- 6 -							
- 8 - - 10 - - 10 - - 12 -	Appears to be a possible filled excavation of the shaft at 9 feet below the surface. The fit to continue downward in a N75W direction.	n the southwest side to led excavation appears					
- 14	Platic coke bottle at 15 feet. Continues mois End at 16 feet - extent of the backhoe. Bottom of test pit at 16.0						A. stores
BUL	E CHUNK DENSITY Q GROUND WATER			PLATE	10		

	VIN	JE & MIDDLETON ENGINEERING, INC.		TES	TPI	T: TF	2-8
PROJECT:	Pro	posed Residential Subdivision CLIENT: Speith & Woh	lford, Ir	nc.			
PROJECT	NUM	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Es	condide	(APN's	s 237-	131-01	<u>& 02)</u>
Date Excav	vated	:	М	_			
Equipment	t: _C	Caterpiller 420 Backhoe					
Remarks:	No c	eaving. No groundwater.			- Oleja		
GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	SM	TOPSOIL: Silty fine to medium sand. Brown color. Damp. Loose, ST-1					3 %
		BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered. Friable. Massive. ST-3					
	SW- GP	Excavates gravelly at 4 feet. Dense.					
6 10 10		Bottom of test pit at 6.0 feet.					
BULK SAMPL	(E	CHUNK DENSITY GROUND WATER	an tang minapina katan ng mga pilipa da akawa Katang minapina da gang minapina da	PLATE	11		

	/INJE & MIDDLETON ENGINEERING, INC.		N	T PI	T: TF	9-9
PROJECT:	Proposed Residential Subdivision CLIENT: Speith & Wohlf	ford, In	ic.	*****		
PROJECT N	UMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondido	(APN's	3 237-	131-01	& 02)
Date Excav	Ated:	[_			
Equipment:	Caterpiller 420 Backhoe	11		30-400-		
Remarks: _	Caving within fill deposits. No groundwater.					
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
-	FILL (af): Clayey sand. Red brown color. Moist. Very loose. Sidewall caving. Placed to cover a mining excavation. ST-4 Gabbroic bedrock is exposed at 3 feet below the surface. At 4 feet a mine excavation was exposed (adit). The mine opening measures 7 feet wide by 6 feet in height. This excavation size extends due east 17 feet into the hillside. At this point the excavation narrows to approximately 3 feet wide and continues horizontally east for approximately 50-60 feet, where the excavation appears to turn northwards. Gabbroic bedrock is exposed throughout the visible portions of the mine excavation. Gabbroic bedrock. Dense. Bottom of test pit at 11.0 feet.					S S
BULK SAMPLE	CHUNK DENSITY Q GROUND WATER	mentania (Takana erasa) Kanangan dengan sebagai (Takana)	PLATE	12		

TWW\v	INJE & MIDDLETON ENGINEERING, INC.		TES	T DI	T: TF	2-10
	Proposed Residential Subdivision CLIENT: Speith & Wohl	ford In) I FI	1. 11	-10
	IMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc			s 237-	131-01	& 02)
	ted:	1	-			
1 -	Caterpiller 420 Backhoe					
30.—31	o caving. No groundwater.					
GRAPHIC (tj.)	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	COLLUVIUM (Qcol):					
	Silty fine to medium sand. Brown color. Dry at the surface, damp at 2 feet. Somewhat blocky. Medium dense. ST-1					
- 2 -						
				E#		
- 4 -	Very tight and blocky at 4 feet. Moist. Slow digging. Appears to be	_				
	an ancient colluvium. Dense.	Н	11	120.4	87	65
SA	A					
- 6 -		_	10	118.0	85	EG
			10	110.0	65	56
- 8 -						
			11			
_ 10 _						
	Continues very tight and blocky. Dense. Backhoe refusal at 10.5 feet.		11	120.3	87	65
	Bottom of test pit at 10.5 feet.					
BULK SAMPLE	CHUNK DENSITY Q GROUND WATER		PLATE	13	efectement a basen et	N. O'STONE SECTION AND SECTION ASSESSMENT OF THE PARTY OF

		VIN	IJE & MIDDLETON ENGINEERING, INC.	******	TES	T PI	T: TF	-11
PRO	JECT	Pro	pposed Residential Subdivision CLIENT: Speith & Wor	lford, lı	nc.			
PRO	JECT	NUM	IBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Es	condid	o (APN'	s 237-	131-01	& 02)
Date	Exca	vated	l:	М	_			
Equi	pmen	t: _C	Caterpiller 420 Backhoe					
Rem	arks:	Cav	ing to 9 feet. No groundwater.					
DEPTH (ft)	GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION
-			CANYON ALLUVIUM (Qal):					
			Fine to medium sand. Brown color. Damp. Very loose. Sidewall caving. ST-3					
-		SW						
2 -								
							727	
				_				
4			Sandy clay / clayey sand. Red brown to brown color. Moist. Soft to very loose. Sidewall caving. ST-4					
6 -								
-		SC- CL						
8 -								
-								
10		SW- GP	BEDROCK (Kgb):					
			Gabbroic rock. Fine to coarse grained. Red brown color.					
			Weathered. Friable. Somewhat blocky. Dense. ST-3 Bottom of test pit at 10.0 feet.					
	BUL SAMP	K LE	CHUNK DENSITY ☐ GROUND WATER		PLATE	14	***************************************	

		AIM	LIE 9 MIDDLETON ENGINEERING INC		750		r. Tr	10
DBC	LIECT	-	IJE & MIDDLETON ENGINEERING, INC.	I.		ואוס	T: TF	-12
			Opposed Residential Subdivision CLIENT: Speith & Woh					
PRO	JECT	NUIV	IBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Est	condido	O (APN'	s 237-1	131-01	& 02)
Date	Exca	vated	d:	М	_			
Equi	pmen	t: _(Caterpiller 420 Backhoe					Parameter and
Rem	arks:	No	caving. No groundwater.					
DEPTH	GRAPHIC	U.S.C.S.	MATERIAL DESCRIPTION	PLE	TURE	fod	TIVE (ATION (
(ft)	GRAI	U.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
			COLLUVIUM (Qcol):					
			Silty fine to medium sand. Brown color. Damp. Loose. ST-1					
- 2 -			Becomes sowewhat blocky and tight at 2 feet. Appears ancient. Medium dense to dense.		9	123.5	89	58
- 4 -					13	117.2	85	71
- 6 -				П	12	109.7	79	55
						,,,,,,,		
- 8 -		SC-						
		ML	Tight and blocky at 8 feet. Continues medium dense to dense.					
- 10 -					10	123.6	89	65
							4	
- 12 -								
- 14 -								
					11	119.0	86	64
- 16 -			End at 16.5 feet - extent of backhoe.					
			Bottom of test pit at 16.5 feet.					
	BUI	K PLE	CHUNK DENSITY GROUND WATER	wa e - 100 100 (7)	PLATE	E 15		

	E & MIDDLETON ENGINEERING, INC.			ST PI	T: TF	P-13
PROJECT: Propo	osed Residential Subdivision CLIENT: Speith & Wohl	ford, In	ic.			
PROJECT NUMBE	ER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondide	(APN	s 237-	131-01	& 02)
Date Excavated:	2/28/13 Logged By: SJM erpiller 420 Backhoe	1	_			
	ring. No groundwater.					
(#) HTTGRAPHIC LOG LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Damp. Loose. ST-1 Becomes blocky and relatively tight at 2 feet. Medium dense.					
SM					2	
A GF	BEDROCK (Kgb):	Ш_	13	117.1	89	71
	Gabbroic rock. Fine to coarse grained. Red brown color. Weathered. Friable. Massive. Blocky. Medium dense to dense.	<u> </u>				
	Bottom of test pit at 6.0 feet.					
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	16		

NIV NIV	JE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	-14
PROJECT: Pro	posed Residential Subdivision CLIENT: Speith & Wohl	ford, In	ic.			
PROJECT NUM	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondido	(APN'	s 237-1	131-01	& 02)
Date Excavated	:	1	-1			
	caving. No groundwater.		· · · · · · · · · · · · · · · · · · ·			
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- 2 -	COLLUVIUM (Qcol): Silty fine to medium sand. Red brown color. Moist. Loose. ST-1					
	Becomes somewhat blocky at 3 feet. Very loose.					
 - 6 -	Blocky at 6 feet. Appears ancient. Medium dense to dense.		12	108.8	78	54
SM SM 8 -	Blooky at a local. Appears arrotent. Medium dense to dense.		12	120.7	87	73
- 10 -						
	Continues blocky at 11 feet. Becomes hard. Very slow digging.		13	117.9	85	73
			11	119.9	87	65
ESECTION	Backhoe refusal at 13 feet. Bottom of test pit at 13.0 feet.					
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	17		

		JJE & MIDDLETON ENGINEERING, INC. pposed Residential Subdivision CLIENT: Speith & Wohlf	ord. Ir		ST PI	T: TF	P-15
Mariana managana		IBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esco			s 237-	131-01	& 02)
		d:3/1/13 Logged By:SJM Caterpiller 420 Backhoe		_			
Remarks:	Cav	ring within fill deposit. No groundwater.					
GRAPHIC LOG	U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- 4	SM	FILL (af): Silty fine to medium sand. Brown color. Dry. Very loose. Sidewall caving. Placed to cover a mining excavation. ST-1 Gabbroic bedrock is exposed at 3 feet below the surface, and on the sides of the excavation. Metal pipe at 4 feet. A partially filled mining excavation on the north side of the test pit at 7 feet below the surface. Appears to be a horizontal adit. Exposed opening in the bedrock measures approximately 7 feet high by 4 feet wide. Appears to trend N25E into the hillside. Gabbroic bedrock. Massive. Hard. Bottom of test pit at 15.0 feet.					
BULK	: E	CHUNK DENSITY TEST WATER		PLATE	18		

AIV	NJE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	2-16
PROJECT: Pro	oposed Residential Subdivision CLIENT: Speith & Woh	lford, Ir	ic.			
PROJECT NUN	/IBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	condide	(APN'	s 237-	131-01	& 02)
	d:3/1/13	Л	-			11000
Equipment: _	Caterpiller 420 Backhoe			-		
	caving. No groundwater.					
GRAPHIC LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	COLLUVIUM (Qcol):					
_	Silty fine to medium sand. Brown color. Dry to damp. Loose. ST-1					
- 2 -						
- - -						
- 4 -	Becomes blocky and relatively tight at 3.5 feet. Appears ancient. Medium dense to dense.					
SM			6	119.9	87	36
	Color changes to red brown at 5 feet. Damp. Continues medium dense to dense.					
- 6 -			10	120.0	87	59
			10	120.0	07	39
- 8 -						
SW- GP	BEDROCK (Kgb):					
	Gabbroci rock. Fine to coarse grained. Red brown color. Weathered. Blocky. Very dense. ST-3		5	138.9	100+	51
	Bottom of test pit at 9.5 feet.					
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	19		

PROJECT: Pr	NJE & MIDDLETON ENGINEERING, INC. oposed Residential Subdivision CLIENT: Speith & Wol //BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Es		ıc.	<u> </u>	T: TF	
Equipment: _	d:3/1/13 Logged By:SJ Caterpiller 420 Backhoe caving. No groundwater.	M				
GRAPHIC LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- 2 - SM	COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Damp. Loose. ST-1 Becomes somewhat blocky at 5 feet. Medium dense to dense.		9	120.7	87	55
SW- GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Red brown color. Weathered. Gravelly to blocky. Dense. ST-3 Bottom of test pit at 7.5 feet.		-			
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	= 20		

	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc. 1: 3/1/13 Logged By: SJM			3237-	131-01	& 02)
	l:SJN Caterpiller 420 Backhoe	И	_	- Wallia		
Remarks: No o	caving. No groundwater.					
GRAPHIC LOG U.S.C.S.	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- SM	TOPSOIL: Silty fine to medium sand. Brown color. Damp. Loose. ST-1					
SW- GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered. Friable. Massive. ST-3					
4	Becomes blocky at 4 feet. Very dense.					
K /A	Bottom of test pit at 5.0 feet.					

	IJE & MIDDLETON ENGINEERING, INC.				T: TF	-19
	Deposed Residential Subdivision CLIENT: Speith & Wohlf DER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc.					& 02)
Equipment: _C	I:3/1/13 Logged By:SJM Caterpiller 420 Backhoe caving. No groundwater.		-			
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
SM - 2 -	TOPSOIL: Silty fine to medium sand. Brown color. Damp. Loose. ST-1					0
SW-GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Red brown color. Gravelly. Dense. ST-3					
	Bottom of test pit at 5.0 feet.					
BULK SAMPLE	CHUNK DENSITY ☐ GROUND WATER	n austr-Macrin presiden freier staden. Austria verweiten aus der Neder efficielle	PLATE	22	ust succion in many of a summar use. Propriet uniform page for the	

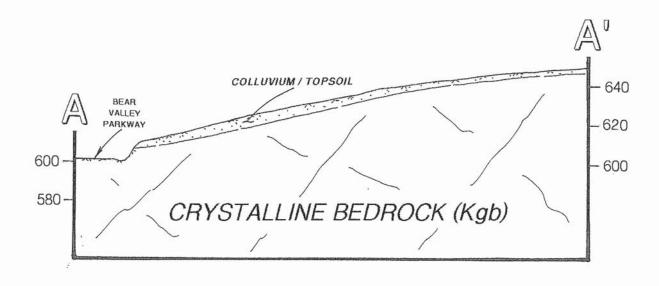
MIN WIN	JE & MIDDLETON ENGINEERING, INC.	5.1 - 5.11	TES	ST PI	T: TF	-20
PROJECT: Pro	posed Residential Subdivision CLIENT: Speith & Wohl	ford, Ir	ic.			
PROJECT NUM	BER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Esc	ondide	(APN	s 237-	131-01	& 02)
Date Excavated		1	-			
Equipment: _C	aterpiller 420 Backhoe					
Remarks: No c	aving. No groundwater.					
GRAPHIC LOG LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
	COLLUVIUM (Qcol):					
	Silty fine to medium sand. Red brown color. Damp. Loose. ST-1					
- 2 -	Becomes blocky at 2 feet. Appears ancient. Medium dense to		9	123.2	89	58
	dense.					
SM						
					0	
- 6 -	Hard at 6 feet. Slow digging. Dense.	_				12.60
	⊤ Backhoe refusal at 6.5 feet.		13	123.3	89	84
	Bottom of test pit at 6.5 feet.					
	g.					
BULK	CHUNK DENSITY TO GROUND					
SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	23		

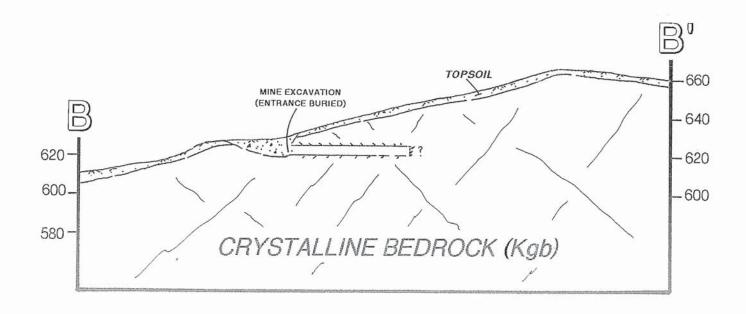
	NJE & MIDDLETON ENGINEERING, INC.			T PI	T: TF	P-21
	### Opposed Residential Subdivision CLIENT: Speith & Wohl #### OPPOSED PROJECT LOCATION: 661 Bear Valley Pkwy, Esc.			s 237-1	131-01	& 02)
Date Excavate Equipment:	d:3/1/13 Logged By:SJN Caterpiller 420 Backhoe	1	-			
Remarks: No	caving. No groundwater.					
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
- 2 - SM	COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Moist. Very loose. ST-1 Continues moist. Loose to firm.					V
6 SW- GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Red brown color. Weathered. Friable. Massive. ST-3					
	Somewhat blocky at 8 feet. Dense.		4	129.3	99	30
	Bottom of test pit at 8.5 feet.		1			
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	24		

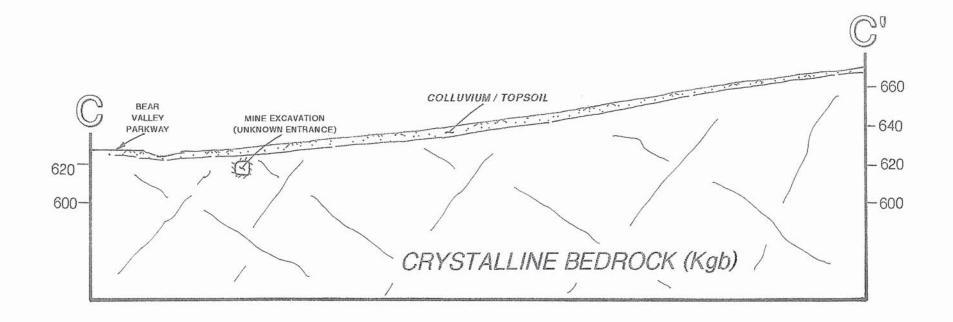
VINJE & MIDD	LETON ENGINEERING, INC.		TES	ST PI	T: TF	-22
PROJECT: Proposed Reside	ntial Subdivision CLIENT: Speith & Wo	hlford, Ir	ıc.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		-
PROJECT NUMBER: 13-116-	P PROJECT LOCATION: 661 Bear Valley Pkwy, E	scondide	(APN'	s 237-	131-01	& 02)
Date Excavated:3/1/13	Logged By:S	JM	-			
Equipment: Caterpiller 420 I			-			
Remarks: No caving. No gro	undwater.					
(B) (B) H1dad	MATERIAL DESCRIPTION	SAMPLE TYPE	MOISTURE CONTENT (%)	DRY UNIT WT. (pct)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
SW Fine to coa	rse sand. Grey color. Loose. ST-3					
COLLUVIU Silty fine to Loose to fir	medium sand. Red brown color. Damp to moist.					
SM Becomes s	omewhat blocky at 5 feet. Medium dense.		10	117.1	85	55
sw- GP Gabbroic ro Weathered.	(Kgb): ock. Fine to coarse grained. Red brown color. Friable. Gravelly. Dense. ST-3 Bottom of test pit at 9.5 feet.		7	121.4	93	43
BULK CHUNK SAMPLE SAMPLE	DENSITY GROUND WATER		PLATE	25	Andrews described the second	

VINJE & MIDDLETON ENGINEERING, INC. PROJECT: Proposed Residential Subdivision CLIENT: Speith & Wohn PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Es Date Excavated: 3/1/13 Logged By: SJI Equipment: Caterpiller 420 Backhoe Remarks: No caving. No groundwater.	condide M	o (APN's	3 237-	131-01	<u>& 02)</u>
Date Excavated:3/1/13 Logged By:SIN	М		237-	131-01	<u>& 02)</u>
Equipment: _Caterpiller 420 Backhoe					
Remarks: No caving. No groundwater.	P.E.				
	PLE				
DEPTH (ft) WATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pct)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)
COLLUVIUM (Qcol): Silty fine to medium sand. Red brown color. Damp to moist. Loose. ST-1 SM - 4					
Sw BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered.		14	113.4	87	70
Friable. Massive. Medium dense to dense. ST-3 Bottom of test pit at 7.0 feet. BULK CHUNK DENSITY GROUND WATER					

TWW\VIN	IJE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	P-24	
VINJE & MIDDLETON ENGINEERING, INC. TEST PIT: TP-24 PROJECT: Proposed Residential Subdivision CLIENT: Speith & Wohlford, Inc.							
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Escondido (APN's 237-131-01 & 02)							
Date Excavated:3/1/13 Logged By:SJM Equipment:Caterpiller 420 Backhoe Remarks:Sidewall caving to 5 feet. No groundwater.							
(H) H14390 CRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)	
- 2 - SM	COLLUVIUM (Qcol): Silty fine to medium sand. Brown color. Moist. Very loose. Sidewall caving. ST-1						
- Sw-	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered.						
GP GP	Friable. Massive. ST-3 Somewhat blocky to gravelly at 6 feet. Dense.		10	125.4	96	68	
	Bottom of test pit at 7.0 feet.						
BULK SAMPLE	CHUNK DENSITY GROUND WATER		PLATE	27			

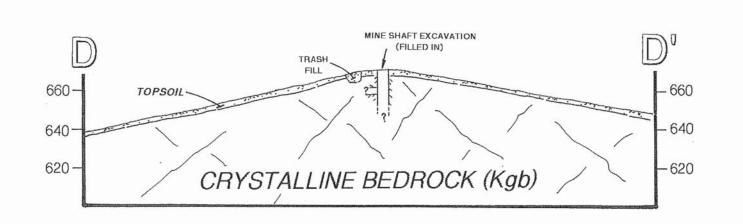

VINJE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	-25	
PROJECT: Proposed Residential Subdivision CLIENT: Speith & Wo	hlford, lı	1С.				
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, E	scondid	o (APN'	s 237-	131-01	& 02 <u>)</u>	
Date Excavated:3/1/13 Logged By: S.	IM					
Equipment: Caterpiller 420 Backhoe						
Remarks: No caving. No groundwater.		X-1115				
	Тш	22	Es.	8≻	OF NO	
DEPTH (ft) BY S'S'S'S' MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)	
TOPSOIL: Silty fine to medium sand. Brown color. Damp. Very loose. ST-						
BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered. Friable. Massive. ST-3 Excavates gravelly at 4.5 feet. Dense.						
Bottom of test pit at 5.5 feet.						
BULK CHUNK DENSITY GROUND SAMPLE SAMPLE TEST WATER		PLATE	28			

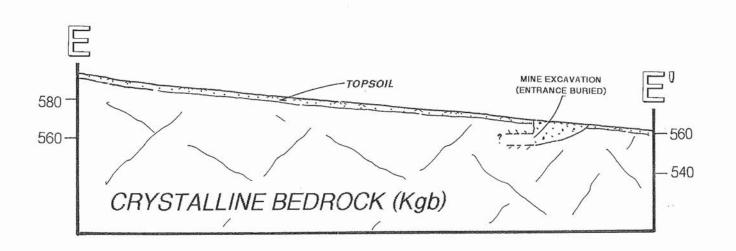

VINJE & MIDDLETON ENGINEERING, INC. PROJECT: Proposed Residential Subdivision CLIENT: Speith & Wohlford, Inc.						
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Escondido (APN's 237-131-01 & 02)						
Date Excavated:3/1/13 Logged By:SJM Equipment:Caterpiller 420 Backhoe						
	eaving. No groundwater.					1 11 Z
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION
SM	TOPSOIL: Silty fine to medium sand. Brown color. Damp. Loose. ST-1					
4 SW- GP	BEDROCK (Kgb): Gabbroic rock. Fine to coarse grained. Grey color. Weathered. Friable. Massive. ST-3					
GP GP	Somewhat blocky to gravelly at 4.5 feet. Dense.					
6 42 / 21 - 1	Bottom of test pit at 6.0 feet.	-				
				7		
BULK SAMPLE	CHUNK DENSITY GROUND SAMPLE WATER		PLATE	29		


MIN JUN.	JE & MIDDLETON ENGINEERING, INC.		TES	ST PI	T: TF	P-27	
PROJECT: Pro	posed Residential Subdivision CLIENT: Speith & Wol	ılford, lı	ıc.				
PROJECT NUMBER: 13-116-P PROJECT LOCATION: 661 Bear Valley Pkwy, Escondido (APN's 237-131-01 & 02)							
Date Excavated	Date Excavated: 3/1/13 Logged By: SJM						
Equipment: _C	aterpiller 420 Backhoe						
Remarks: Cavin	ng within fill deposit. No groundwater.						
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	RELATIVE DENSITY (%)	DEGREE OF SATURATION (%)	
	FILL (af):						
	Silty fine to medium sand. Brown color. Moist. Very loose. Sidewall caving. ST-1						
- 2 - 	Unknown if excavation is associated with mining activities.						
SM - 4 -	Plastic and metal irrigation pipe in the uppper 3 feet.						
 	Organics and stumps at 5 feet. Continues very loose.						
SW- GP	BEDROCK (Kqb):						
	Gabbroic rock. Fine to coarse grained. Red brown color. Weathered. Gravelly. Dense. ST-3 Bottom of test pit at 7.0 feet.		J	L			
BULK SAMPLE	CHUNK DENSITY GROUND SAMPLE VATER		PLATE	30			

GEOLOGIC CROSS-SECTIONS

SCALE: 1" = 50'





GEOLOGIC CROSS-SECTIONS

SCALE: 1" = 50'

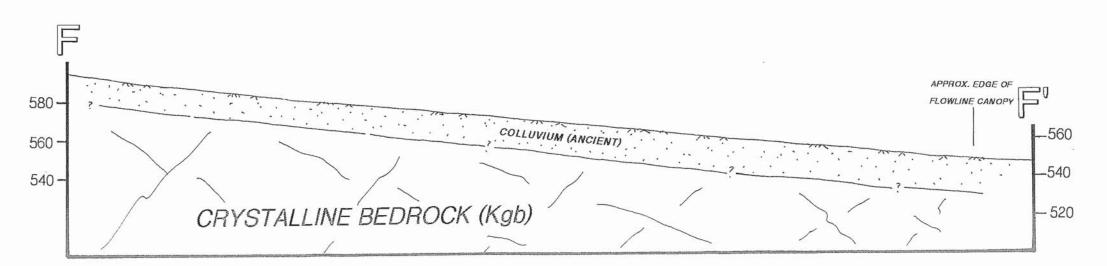
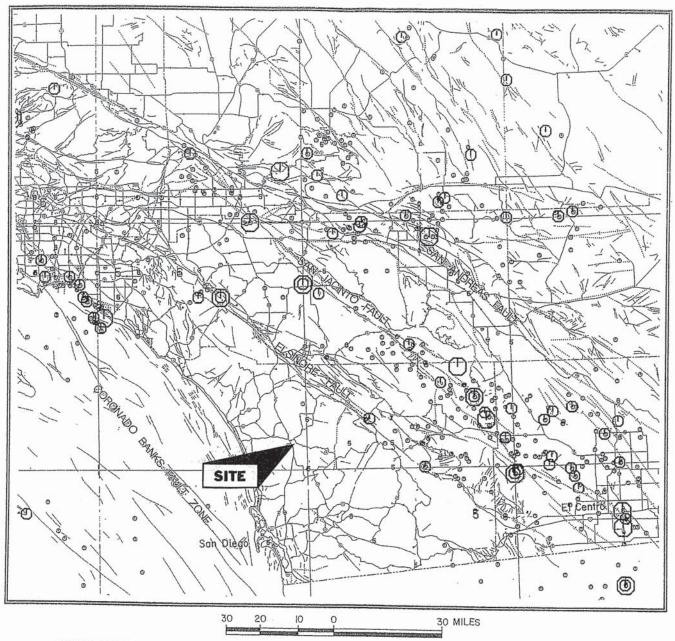



PLATE 32 V&M JOB #13-116-P

FAULT-EPICENTER MAP SAN DIEGO COUNTY REGION

INDICATED EARTHQUAKE EVENTS THROUGH 75 YEAR PERIOD (1900-1974)

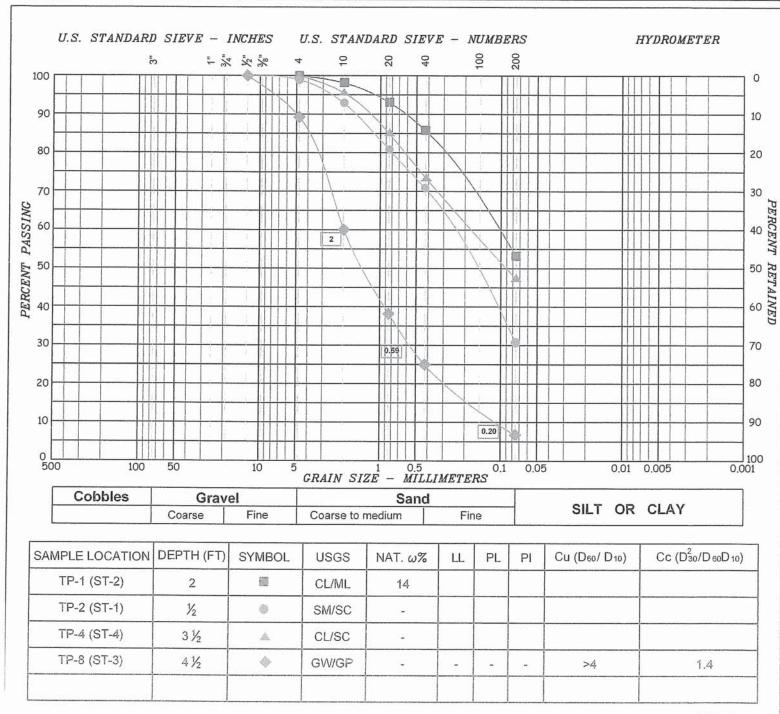
Map data is compiled from various sources including California Devision of Mines and Geology, California Institute of Technology and the National Oceanic and Atmospheric Administration. Map is reproduced from California Division of Mines and Geology, "Earthquake Epicenter Map of California; Map Sheet 39." 1978

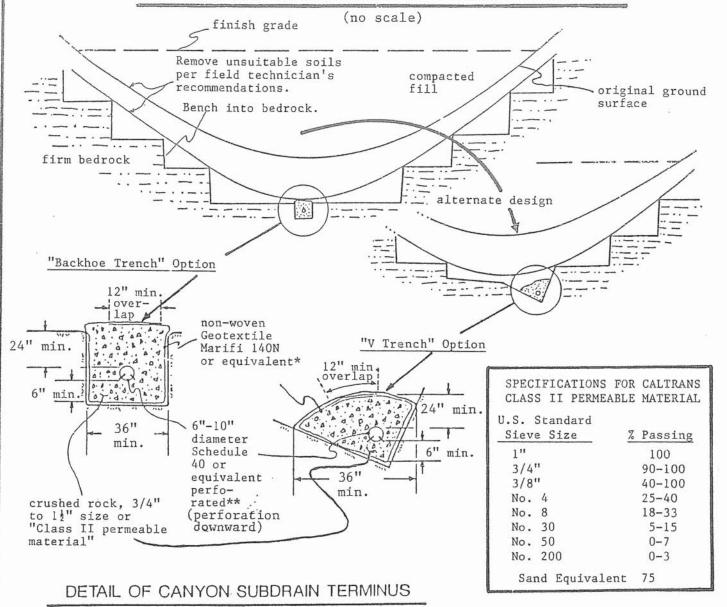
MAGNITUDE

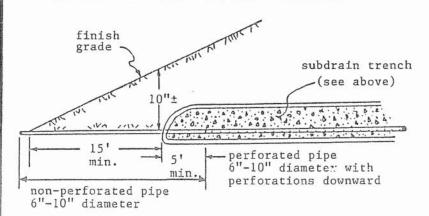
0	661 BEAR VALLEY PARKWAY ESCONDIDO
---	--------------------------------------

VINJE & MIDDLETON ENGINEERING

DSA FILE#	DSA APPL.#				
DSA/LEA#	Job # 13-116-P	Soil Type: 1, 2, 3, & 4			
Project: Residential Subdivision	Location: 661 Bear Valley Parkway, Escondido				
ASTM Test Method:	Date: March 2013	Tech: B.B. & R.F.			
Supervising Lab Tech: Ray Fox	NICET 129713	Exp. Date: 7/1/2013			
Supervising Lab Manager: S. Mehdi S. Shariat	RCE # 46174 Exp. Date: 12/3				
VA. (14. 1) 40 - 1 40 -					



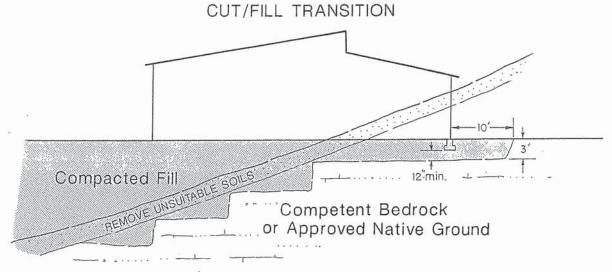

PLATE 34

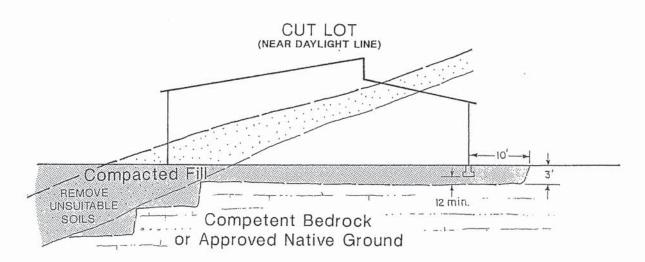

cc: ___Project Architect ___Structural Engineer ___Project Inspector ___DSA Regional Office

March 2013

DSA FILE # ______ DSA APPL. # _____ DSA / LEA # _____ Test Method: <u>ASTM D4186</u> Job # 13-116-P Date: March 2013 Job Name: 661 Bear Valley Parkway, Escondido (40-ac. site) Sample Depth Sample Sample Condition Explanation Location (ft.) Symbol TP-1 2 Remolded to 90% of MDD - FIELD MOISTURE ---- SAMPLE SATURATED 1.030 1.020 1.010 1.000 Water Added 0.990 Consolidation (inch/inch) 0.980 0.970 0.960 0.950 0.940 0.930 0.920 0.910 0.900 0.890 20000 30000 40000 50000 3000 4000 5000 200 300 400 500 Normal Load (psf) Supervising Lab Tech: Ray Fox Supervising Lab Manager: S. Mehdi S. Shariat Exp. Date: <u>7/1/2013</u> RCE # <u>46174</u> Exp. Date: 12/31/2014 NICET: __129713 cc: ___Project Architect ___Structural Engineer ___Project Inspector ___DSA Regional Office

TYPICAL CANYON SUBDRAIN DETAILS


NOTE: Subdrain to be installed in competent material as evaluated by the field representative. Non-perforated pipe to be installed in regions recommended by the field representative.

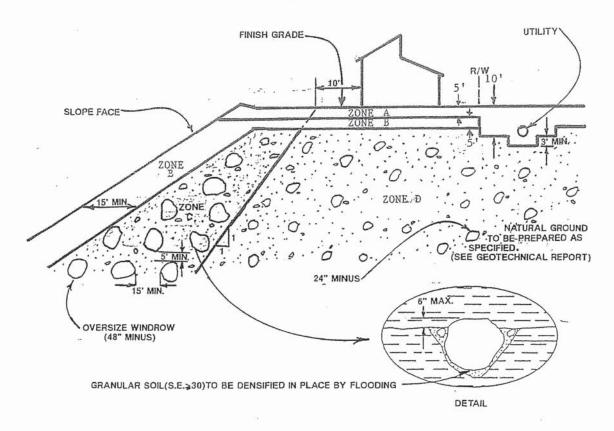

*If Caltrans Class II permeable material is used in place of 3/4"- $1\frac{1}{2}$ " gravel, fabric filter may be deleted.

**SUBDRAIN TYPE - Subdrain type should be Acrylonitrile Butadiene Stryene (A.B.S.), Polyvinyl Chloride (PVC) or approved equivalent. Class 125, SDR 32.5 should be used for maximum fill depths of 35 feet. Class 200, SDR 21 should be used for maximum fill depths of 100 feet.

> PLATE 36 V&M JOB #13-116-P

UNDERCUTTING DETAILS Typical - no scale

NOTE: Some agencies require complete removal and recompaction of the entire cut portion of the lot. Also, removal and recompaction of the entire cut portion may be required by the project geotechnical engineer based upon soil and groundwater conditions at the site.


Vertical and horizontal limits of over-excavation are subject to additional revision by the project geotechnical consultant based upon the actual site conditions. Subdrains may also be necessary as determined by the geotechnical consultant.

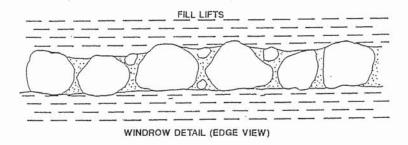

VINJE & MIDDLETON ENGINEERING, INC.

PLATE 37 V&M JOB #13-116-P

ROCK DISPOSAL RECOMMENDATIONS

WINDROW METHOD Typical - no scale

MATERIAL AND CONSTRUCTION SPECIFICATIONS ARE PROVIDED ON THE ATTACHED SHEET (ALSO SEE GEOTECHNICAL REPORT).

VINJE & MIDDLETON ENGINEERING, INC.

PLATE 38 V&M JOB #13-116-P

ROCK DISPOSAL RECOMMENDATIONS

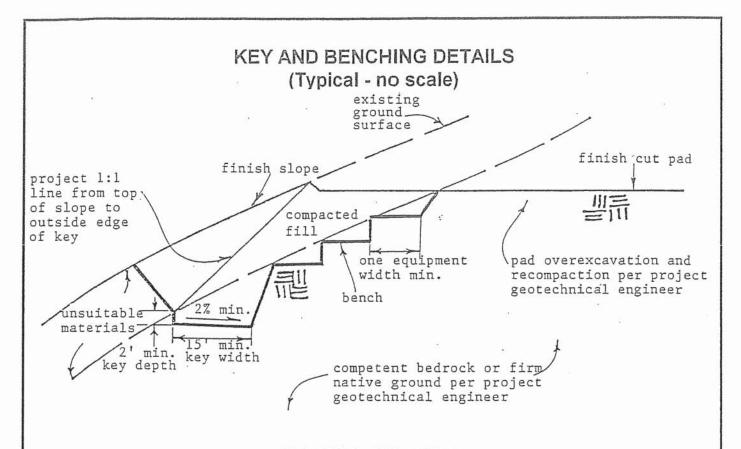
ZONE A:

Shall be measured 5 feet vertically from the finished building pad grade. In public right-of-way and easement, Zone A shall be 10 feet minimum or must extend 3 feet below the deepest utility, whichever is greater. Zone A must consist of compacted soil only (no rock fragments over six inches in maximum dimension) and shall contain at least 40% soil sizes passing the ¼-inch sieve.

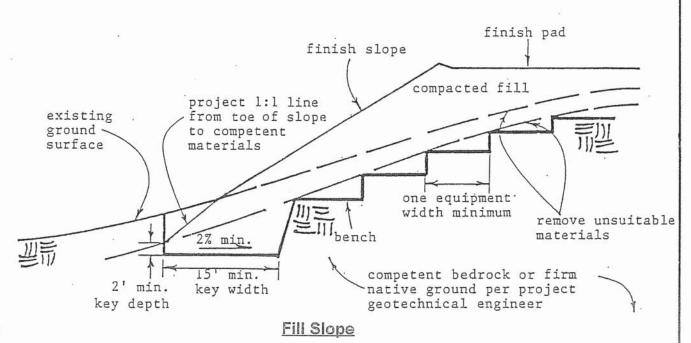
ZONE B:

Shall be 15 feet measured horizontally from face of slope and 5 feet measured vertically below Zone A. Zone B shall be similar to Zone A except individual rocks up to 12 inches in maximum dimension shall be allowed.

ZONE C:

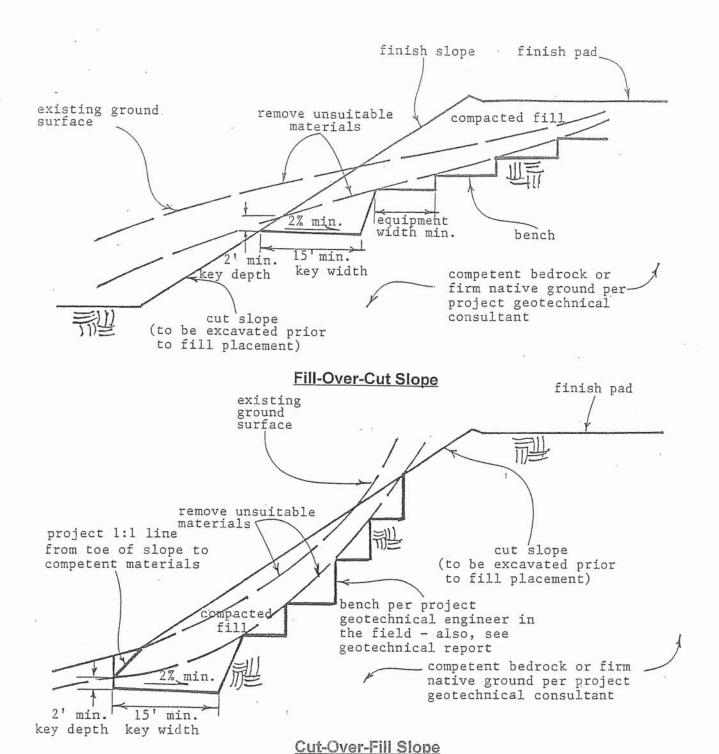

Oversize rocks not larger than 48 inches in maximum diameter must either be individually placed or windrowed. For individual placement, rocks must be uniformly distributed and spaced so as to permit placement and compaction of soil conforming to Zone A. For windrows, rocks shall be placed in excavations in well compacted soil conforming to Zone A. Approved granular soil ($SE \ge 30$) must be flooded in the windrows to completely fill the voids around and beneath rocks. All windrows must be parallel and may be placed either parallel or perpendicular to face of slope depending on site geometry.

ZONE D:


Shall be similar to Zone A except individual rocks up to 2 feet in maximum dimension shall be allowed providing rocks larger than approximately 12 inches are well spaced so as to permit placement and compaction of soil around the larger rocks.

All rock placement, fill placement, and flooding of approved granular fill must be continuously observed by the geotechnical engineer.

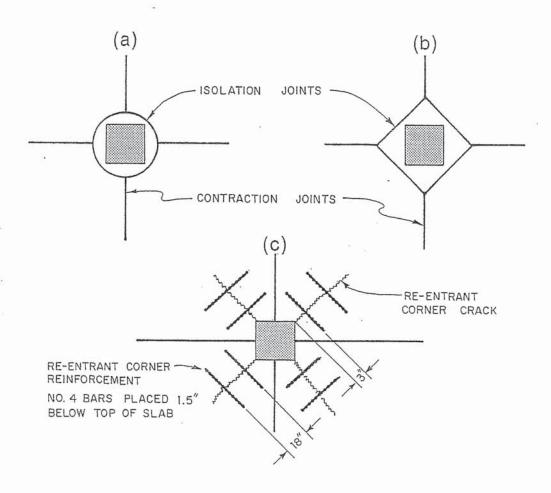
PLATE 39 V&M JOB #13-116-P


Side Hill Stability Fill Slope

Note: Key and benching details shown herein are subject to revisions by the project geotechnical engineer based upon actual site conditions. Back drains may also be necessary as determined by the project geotechnical consultant.

PLATE 40 V&M JOB #13-116-P

KEY AND BENCHING DETAILS (Typical - No Scale)



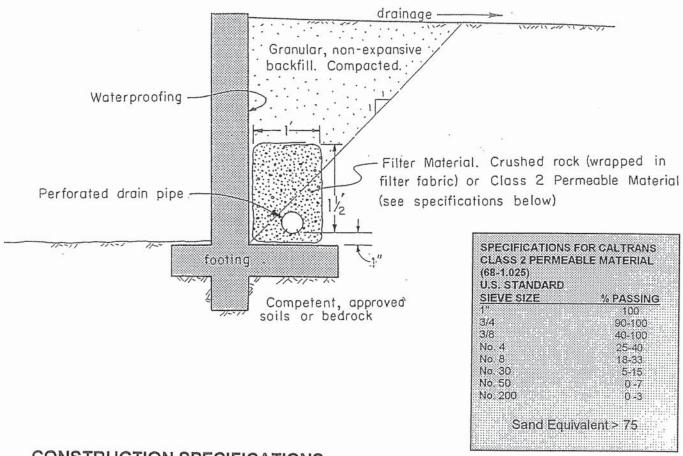
Note: Key and benching details shown herein are subject to revision by the project geotechnical engineer based upon actual site conditions. Back drains may also be necessary as determined by the project geotechnical consultant.

PLATE 41 V&M JOB #13-116-P

ISOLATION JOINTS AND RE-ENTRANT CORNER REINFORCEMENT

Typical - no scale

NOTES:


- Isolation joints around the columns should be either circular as shown in (a) or diamond shaped as shown in (b).
 If no isolation joints are used around columns, or if the corners of the isolation joints do not meet the contraction joints, radial cracking as shown in (c)may occur (reference ACI).
- 2. In order to control cracking at the re-entrant corners (±270° corners), provide reinforcement as shown in (c).
- Re-entrant corner reinforcement shown herein is provided as a general guideline only and is subject to verification
 and changes by the project architect and/or structural engineer based upon slab geometry, location, and other
 engineering and construction factors.

VINJE & MIDDLETON ENGINEERING, INC.

PLATE 42 V&M JOB #13-116-P

RETAINING WALL DRAIN DETAIL

Typical - no scale

CONSTRUCTION SPECIFICATIONS:

- Provide granular, non-expansive backfill soil in 1:1 gradient wedge behind wall. Compact backfill to minimum 90% of laboratory standard.
- Provide back drainage for wall to prevent build-up of hydrostatic pressures. Use drainage openings along base of wall or back drain system as outlined below.
- 3. Backdrain should consist of 4" diameter PVC pipe (Schedule 40 or equivalent) with perforations down. Drain to suitable outlet at minimum 1%. Provide ¾" 1½" crushed gravel filter wrapped in filter fabric (Mirafi 140N or equivalent). Delete filter fabric wrap if Caltrans Class 2 permeable material is used. Compact Class 2 material to minimum 90% of laboratory standard.
- 4. Seal back of wall with waterproofing in accordance with architect's specifications.
- Provide positive drainage to disallow ponding of water above wall. Lined drainage ditch to minimum 2% flow away from wall is recommended.
 - * Use 1½ cubic foot per foot with granular backfill soil and 4 cubic foot per foot if expansive backfill soil is used.

VINJE & MIDDLETON ENGINEERING, INC.

PLATE 43 V&M JOB #13-116-P

ATTACHMENT

Subsurface Surveys & Associates, Inc.

2075 Corte Del Nogal, Suite W Carlsbad, CA 92011

Phone: (760) 476-0492 Fax: (760) 476-0493

Vinje & Middleton Engineering, Inc. 2450 Auto Park Way Escondido, CA 92029-1229 February 7, 2013

Attn: Steve Melzer

Re:

Seismic Survey Summary Report

661 Bear Valley Parkway, Escondido

This report covers the results of a seismic refraction survey performed at 661 Bear Valley Parkway in Escondido, California. The two main objectives were: 1) to measure the compressional wave velocity of granitic bedrock for rippability assessment and 2) record profiles across staked target areas where buried mine shafts are thought to be located and analyze the data for evidence of void space or deeply filled ground.

The field work was conducted during January 16-17, 2013. Nine seismic lines, comprised of 14 individual spread layouts, were recorded at locations selected by VME. A survey location map is provided on Figure 1 that shows the position and orientation of the traverses.

GEOLOGIC SETTING

A review of the "Geologic Map of California, Santa Ana Sheet", (California Division of Mines and Geology, 1966) indicates the local area is underlain Mesozoic granitic rocks that are primarily granodiorite and tonalite. Surface deposits are mainly colluvium on the hillsides and alluvium along the valley floor.

DATA ACQUISITION AND FIELD METHODS

Seismic refraction data were recorded with a Bison 9024 signal enhancement seismograph and 30 Hz geophones. The standard spread layout used 24 geophones with a 10-foot spacing. Each spread used five shotpoints, one off each end (10-foot offset) and three within the interior of the spread. Seven shotpoints were used for traverses that crossed the suspected mine shaft locations to increase ray path coverage for tomographic modeling. Depth of investigation is approximately 60 feet.

Compressional wave energy was created by sledge hammer impacts on a metal plate. The signal enhancement feature of the seismograph allowed returns from repeated hits to be stacked, thus improving the signal. Each record was stored digitally on an internal hard disk and printed copies of each seismogram were made in the field on thermal paper. Example seismic records from this

survey are shown on Figure 2.

Relative elevations of all shotpoints and geophones were determined by differential leveling with a hand level. Geophone 1 (distance = 0 ft.) at the beginning of each line was assigned a elevation value based on data from Google Earth maps. All other elevation measurements along the line are relative to this point.

The endpoints of each seismic spread were recorded with a hand held Garmin GPS receiver. Latitude and longitude positions were converted to UTM coordinates, Zone 11 using the WGS 1984 North American Datum and used to prepare the Seismic Survey Location Map (Figure 1).

SEISMIC REFRACTION METHOD

The refraction method involves measuring the total time for compressional waves to travel from a shotpoint through the subsurface to a set of geophones placed linearly along the ground. Based on Snell's Law, when two or more layers are present with increasingly higher acoustic velocity, waves become critically refracted across the layer boundaries and begin traveling at the speed of the underlying layer. The advancing waves then generate new wavefronts back to the ground surface. The first surge of energy hitting the geophone is termed the "first arrival" and is depicted on the seismogram as a high angle deflection along each trace. Example field records from this survey that show the first arriving energy are provided on Figure 2.

Recognition of direct wave arrivals (non-refracted) verses refracted waves is a key element of refraction interpretation. To assist this process, the first arrival times measured from the seismic records are plotted on graphs of time verses distance called Time-Distance graphs. An example T-D graph from Line A is shown on Figure 3. Based on changes in slope on the graphs, a preliminary layer number (i.e. 1, 2, 3) is assigned to each segment of the graph. The layer assignments together with time, distance and elevation data are input to a computer for additional processing.

SEISMIC PROCESSING AND INVERSION MODELING

Seismic data from this survey was processed using two methods for generating seismic velocity cross sections. One method produces layered earth models and uses the average velocity across the spread to calculate the thickness of the layers. This is the most widely used approach for rippability surveys because depths to refracting (velocity) horizons can be measured directly from the cross sections. Layered models are best applied when there is not a significant lateral variation in velocity along the line and the layer interfaces are relatively flat.

The second modeling approach uses what is referred to as tomographic inversion and produces velocity gradient cross sections in color. Tomography does not perform refraction layer calculations or attempt to measure discrete depths. Instead, the main objective is to create a velocity distribution grid in the subsurface. Each node of the grid has a specific velocity

associated with it. The goal is to adjust or "iterate" the velocity matrix so that the computer derived travel-time curves match what was recorded in the field. The final velocity grid is then loaded into a contouring program that produces color-filled cross sections. This method is typically used for imaging the shape and configuration of complex structures such as faults, landslides and intrusions, and areas where strong lateral velocity gradients are suspected within the weathered profile.

Layered Models

Processing and interpretation of this data set was accomplished with "SIPT2", an interactive inversion modeling program developed by James Scott for the U.S. Bureau of Mines. The inversion algorithm uses the delay time method to construct a first pass depth model. The model is then adjusted by an iterative ray tracing process that attempts to minimize the discrepancies between the total travel times calculated along ray paths and the observed travel times measured in the field.

This program calculates refractor velocity in two ways. First, apparent velocities from each shot are determined by the inverse slope of a best fit (least squares) line through datum-corrected travel times. True velocity is estimated from the apparent velocities by using the following equation:

$$Vt = 2(Vu \times Vd)/(Vu + Vd)$$

where

Vt = true velocity

Vu = apparent up dip velocity Vd = apparent down dip velocity

The second method uses a more sophisticated set of equations (the Hobson-Overton formula) developed by the Canadian Geological Survey. The final velocity assigned to the refractor is a weighted average of the results of the two methods. The weighting is based on the number of arrival times used in the computations.

Velocity Gradient Models

The tomographic modeling program used for this survey is SeisOpt Version 3.5 from Optim LLC. It uses a proprietary inversion algorithm that applies a non-linear optimization technique called generalized simulated annealing to adjust the velocity grid points for the best statistical match. It is referred to as an optimization because it attempts to find the model that has the least minimum travel-time error between the calculated and observed (field) measurements.

SUMMARY OF RESULTS

Layer Velocity Cross Sections

Modeling results have been compiled as layered velocity cross sections for rippability assessment (see Appendix A). Velocities posted on the cross sections represent averages as described in the previous section. Therefore, minor localized changes in velocity may occur along any profile. A description of the layers is provided below and a cross section summary is shown in Table 1.

Layer 1 - is mostly unconsolidated colluvium and highly decomposed granitic bedrock. Thickness generally varies from 5 to 15 feet.

Layer 2 - is interpreted to be weathered bedrock. The velocity range is 2654-3936 ft/sec and should be easily rippable.

Layer 3 - represents moderately weathered bedrock with velocity in the range of 3620-5597 ft/sec and is also considered rippable (see Cat D-9 rippability chart on Figure 4). The minimum and maximum depth to the interface between Layer 2 and Layer 3, as measured from the ground surface, is provided on Table 1.

Table 1. Layer Model Summary

	Velocity	Velocity	Velocity	Depth Range
Line	Layer 1	Layer 2	Layer 3	Layer 2/3 Interface
1 Spd-1	1320	2657	4779	22-48
1 Spd-2	1263	2818	3909	26-56
1 Spd-3	1389	2970	3620	28-44
1 Spd-4	1369	2830	3992	30-49
1 Spd-5	1247	3181	4074	31-46
2	1363	2654-3376	5019	22-52
3	1470	3936	5597	48-55
4 Spd-1	1411	3206	3950	30-45
4 Spd-2	1270	3514	4347	21-42
5	11301	2924	5373	43-64
6	VGM			
7	1327	2660	5792	41-60
8	VGM			
9	VGM			

Velocity in (ft/sec), Depth in (feet)

VGM - see velocity gradient model in Appendix B

The thickness of the weathered zone beneath this property is substantial. The average thickness well exceeds 30 feet, as indicated by the Depth Range Layer 2/3 Interface values listed above. Cuts and other earth work at this site should not be difficult.

In granitic rocks, weathering tends to be gradational and usually produces a gradual increase in velocity with depth. Variation of \pm 10% from the posted averages may occur between the top and bottom of a layer. The colored velocity gradient models provided in Appendix B, graphically illustrate this gradual increase with depth.

Large boulders, some 5-10 feet in diameter, are exposed in the southeast portion of the property. These are floaters and do not appear to be attached to hard unweathered bedrock. The cross sections prepared for Lines 2 and 3 show evidence of shallow buried boulders at several locations. This may pose problems for construction work in this area.

Figure 4 presents a rippability chart (courtesy of Caterpillar Tractor Co.) for a D9N Ripper. Bar graphs show the relationship between seismic compressional wave velocity and ripper performance for various rock types in three categories: rippable, marginal, and non-rippable. Granitic rocks are listed as marginally rippable at approximately 6700 ft/sec and are considered non-rippable above 8000 ft/sec. This chart is provided only as a guide and should not be considered absolute. Other geologic factors that may influence bedrock rippability at this site are changes in composition of the granite and the presence of fractures and joints.

Velocity Gradient Models

Four seismic traverses were recorded across staked locations where possible buried mine shafts are thought to be located based on historical records. To increase resolution and detection capability of these suspected vertical structures, data from seven shotpoints was acquired and processed with tomography modeling software. Results are provided in Appendix B. The following is a brief summary of the findings.

<u>Line 7</u> - this traverse was draped over the axis of the N-S trending ridge line with the targeted shaft location between geophones 9 and 10. The ground surface curvature was steep with low endpoints and a central high point neat the center of the line. Attempts to create a useable model for this traverse were unsuccessful due to the topographic modeling affects. As an alternative, Line 1- Spread 1 which was laid out along the ridge line and 10 feet east of the target stake, was processed using tomography. A layer model was produced for Line 7 with no problems.

<u>Line 1 - Spread 1</u> - a broad low velocity zone extends to depths of 10-18 feet between stations 60-110 feet. The VME stake is 10 feet east of station 102 feet. This area is thought to be filled ground and may be related to previous mining activity or could be fill that was installed as part of road construction along the ridge.

Line 6 - was laid out at the bottom of the slope on the west side of the property and crosses the

paved driveway. The VME target stake is located at station 93 feet. Beneath this area and southward under the driveway, the weathered bedrock interface is irregular and shows evidence of a channel structure beneath station 150 feet. This could be an erosional remnant or a backfilled area where previous mining activity took place. The is no significant anomaly below the staked area that would indicate the presence of a vertical structure or large mine shaft.

<u>Lines 8 and 9</u> - show no evidence of low velocity anomalies, vertical structures, or disturbed ground, that would indicate large void space or deep backfill beneath the staked target areas.

All data acquired during this survey is considered confidential and is available for review by your staff at any time. We appreciate the opportunity to participate in this project.

Please call if there are any questions.

Pawalen

Phillip A. Walen Senior Geophysicist

CA Registration No. GP917

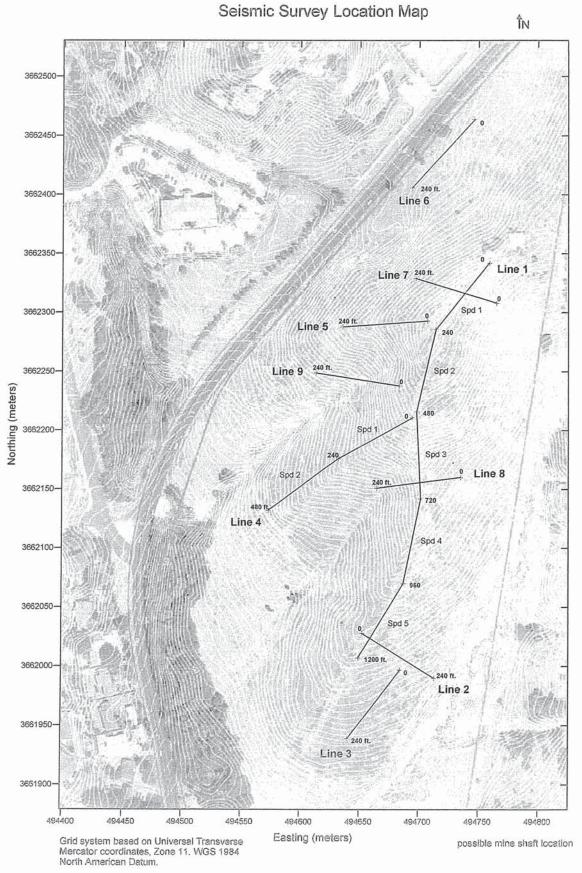
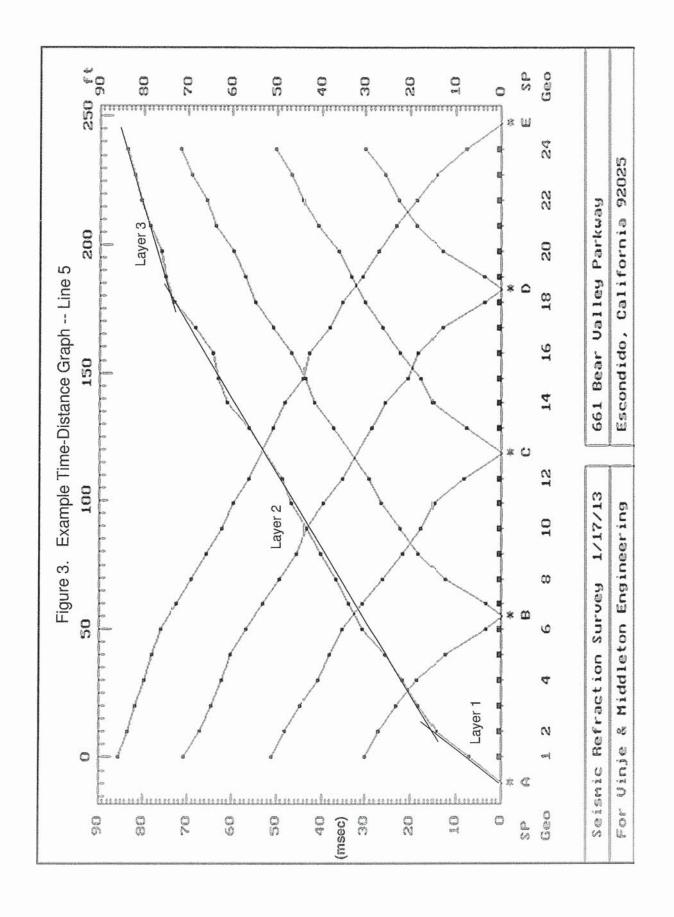
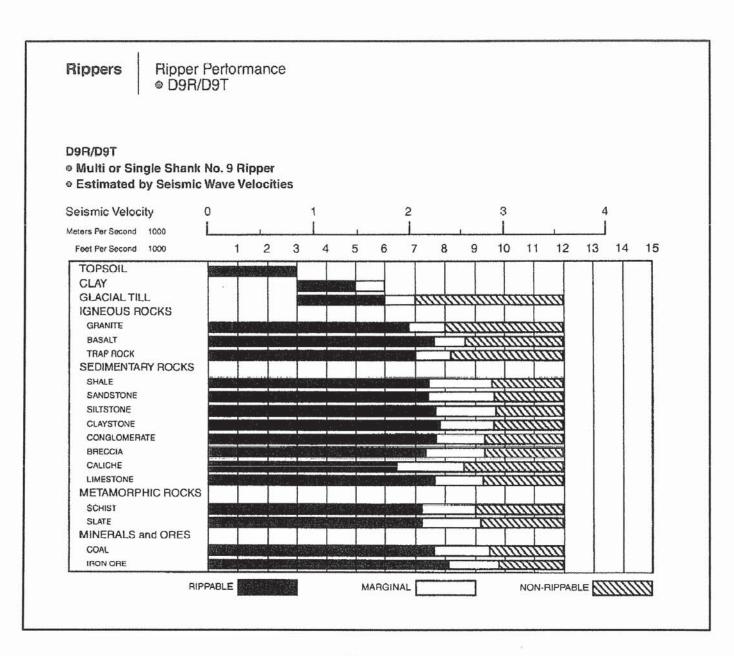
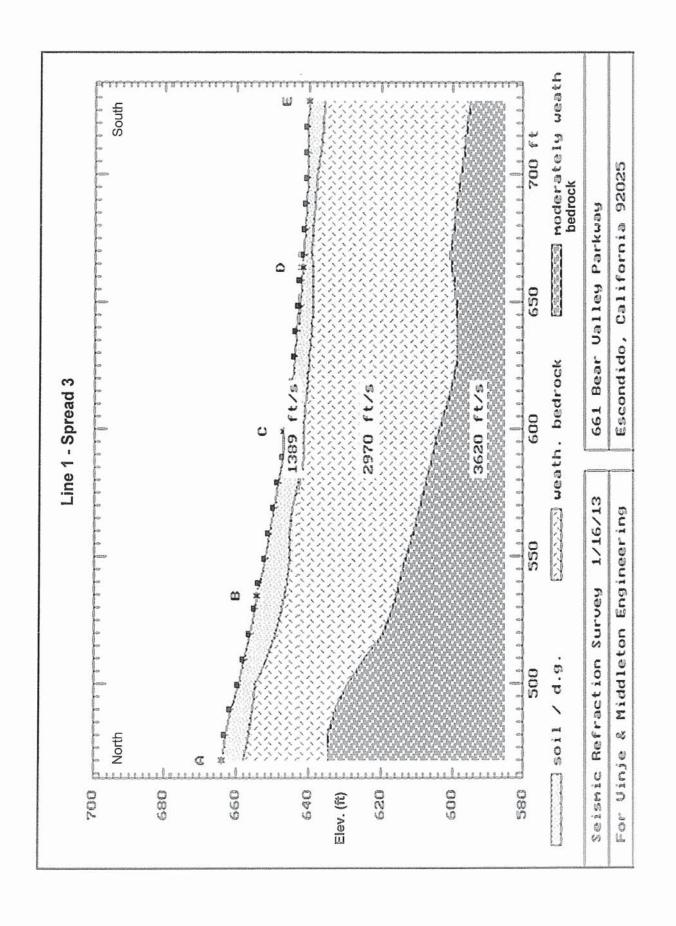
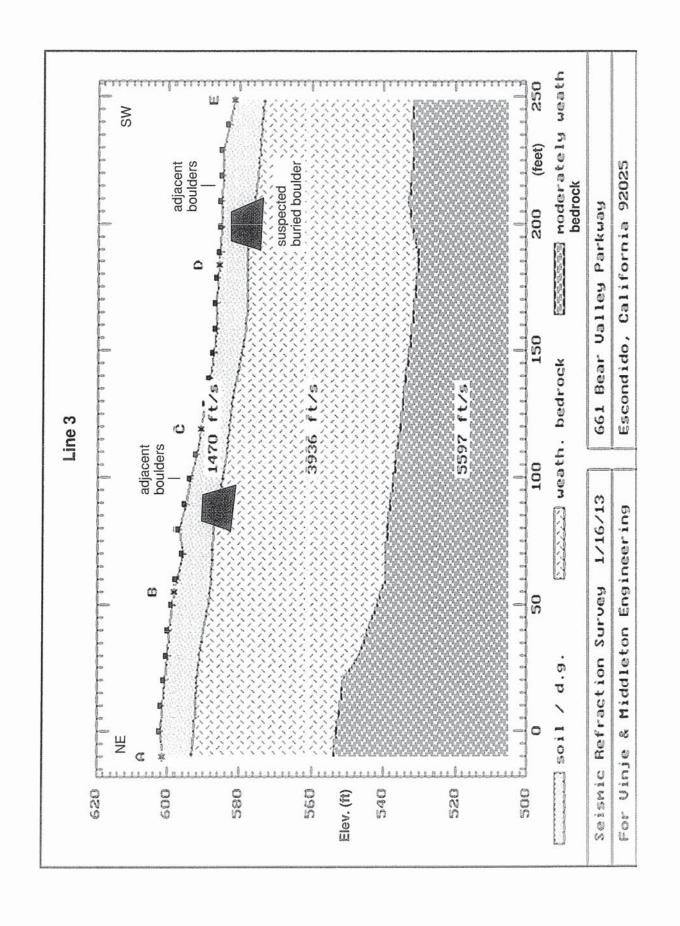
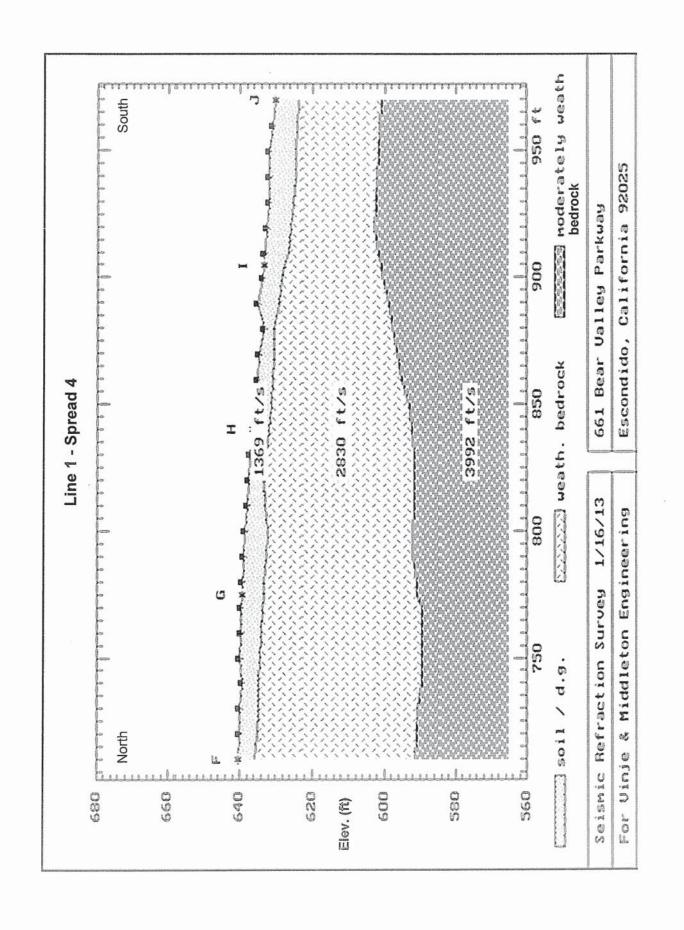



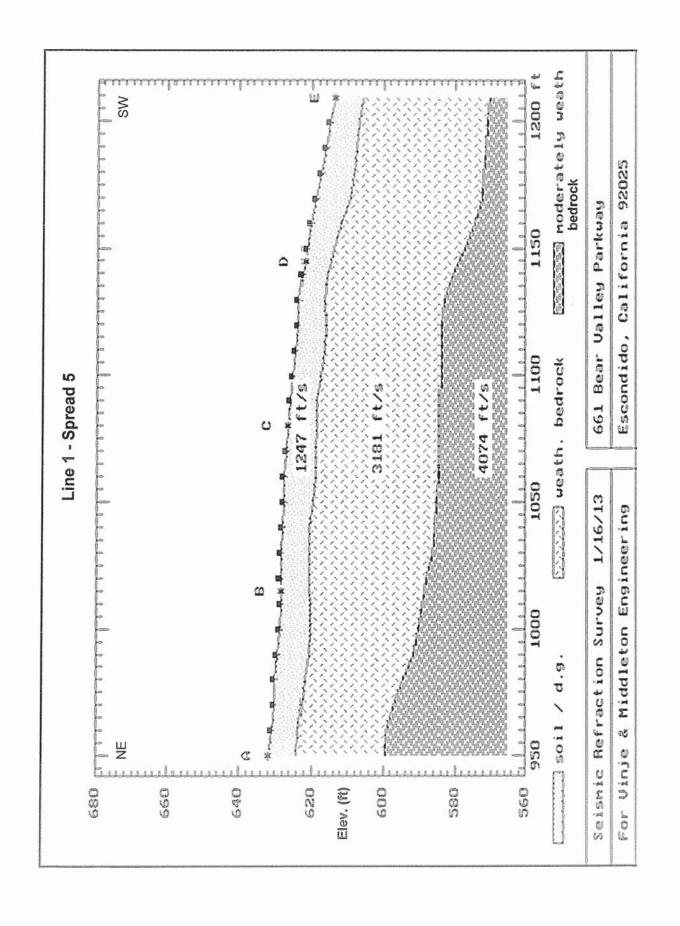
Figure 1

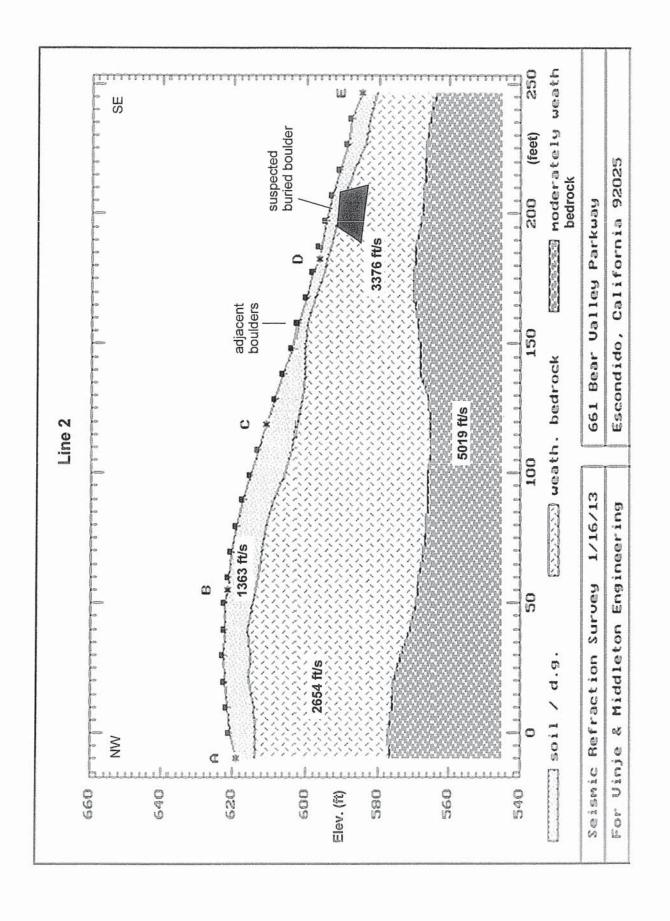
Example Seismic Field Records

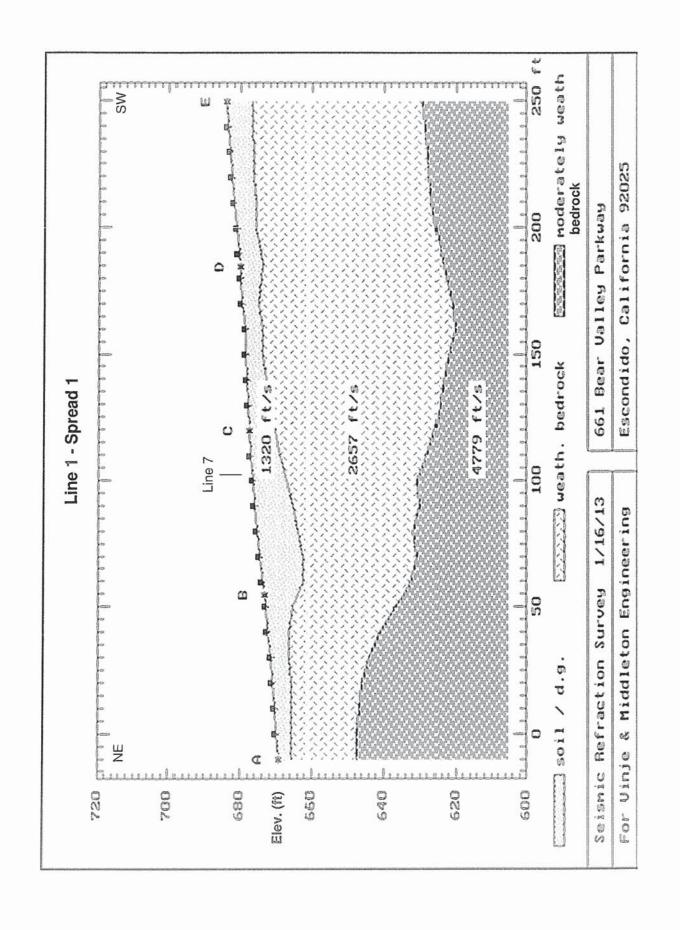
Figure 2

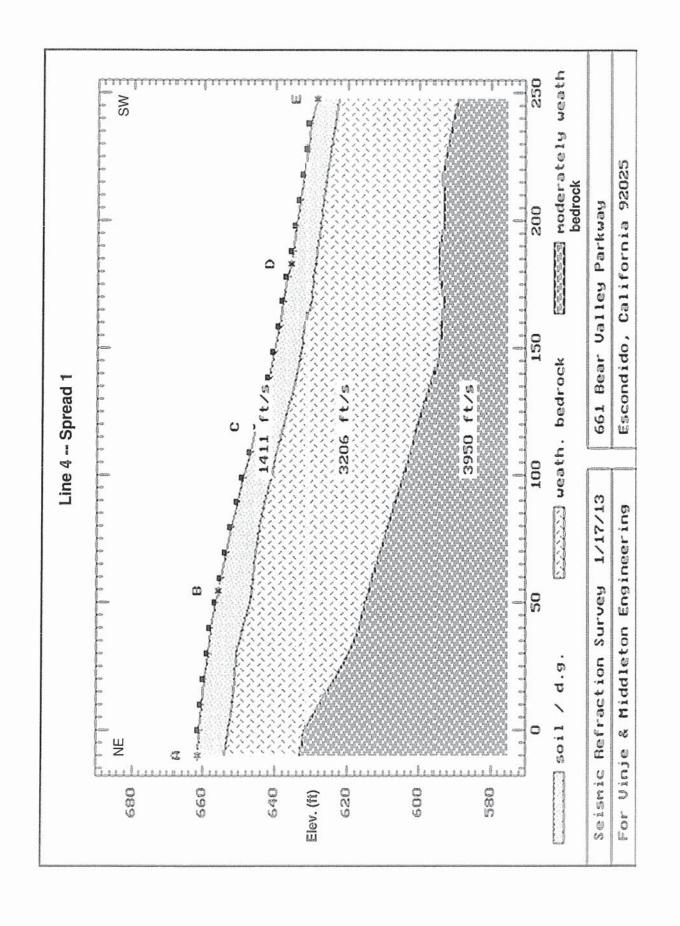




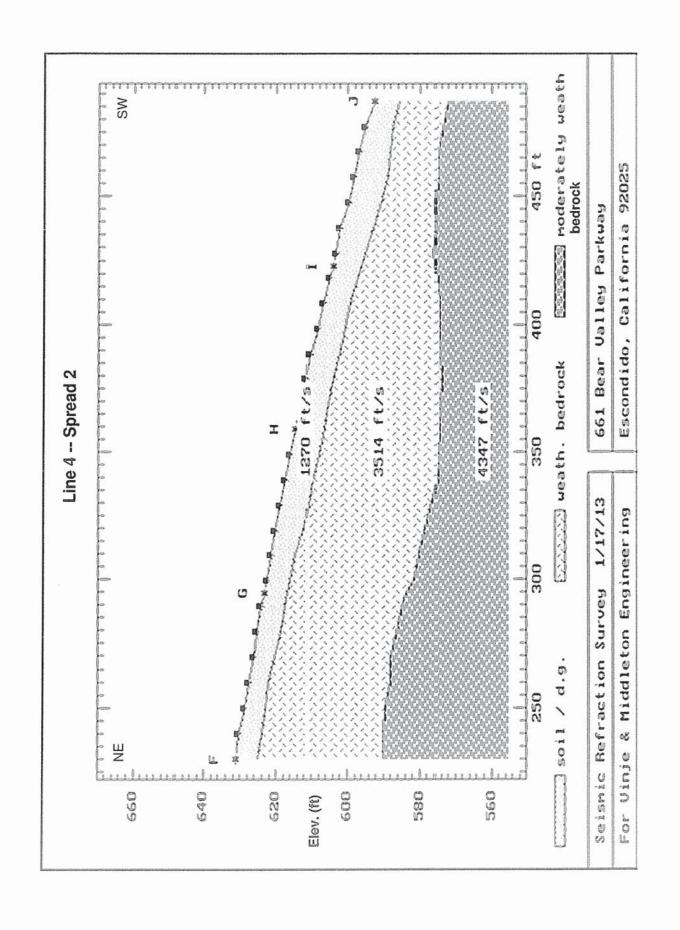

Figure 4

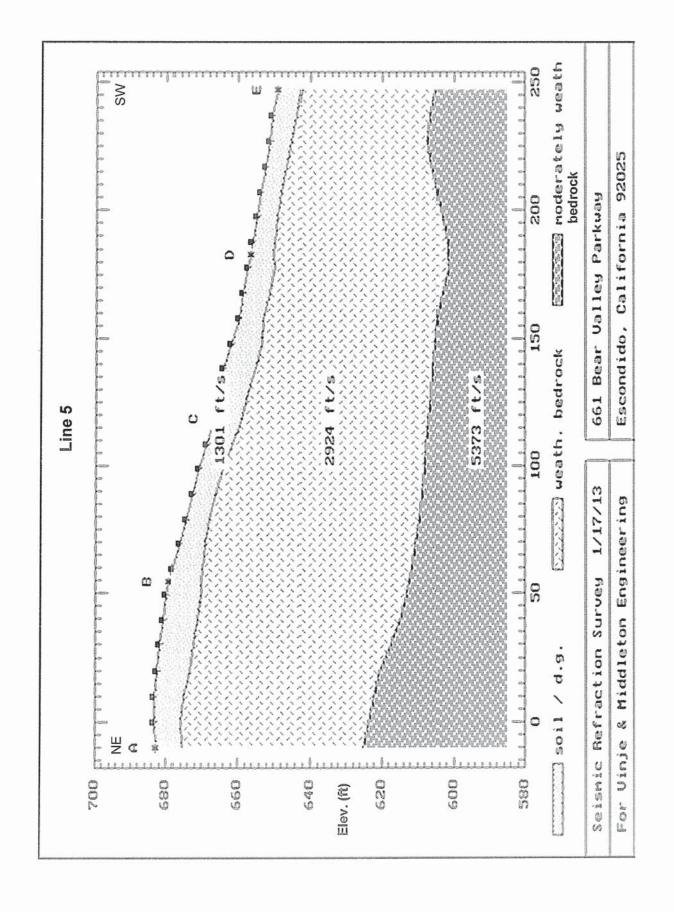

Appendix A

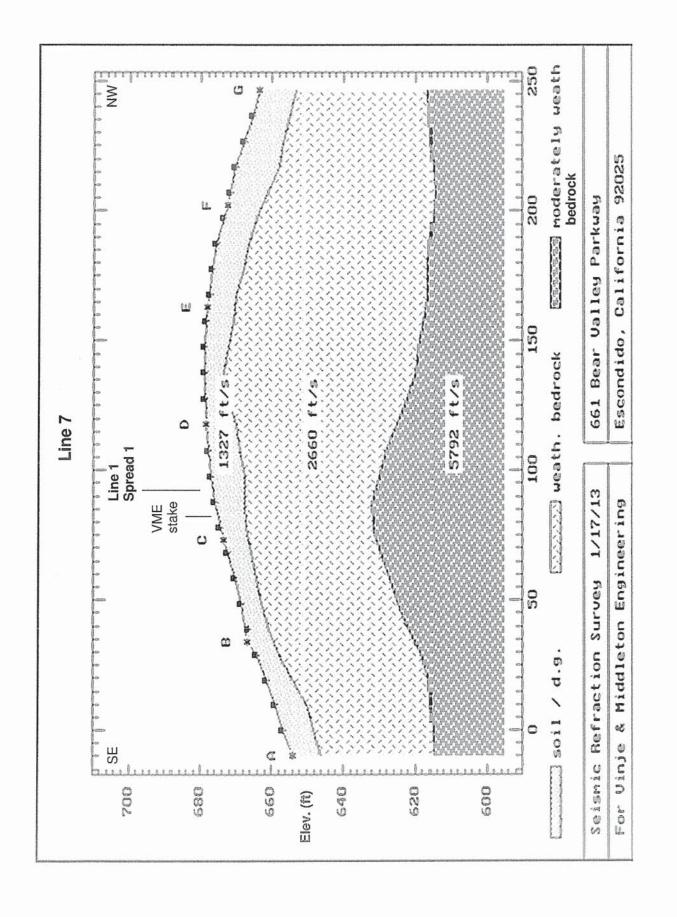

Layered Velocity Cross Sections

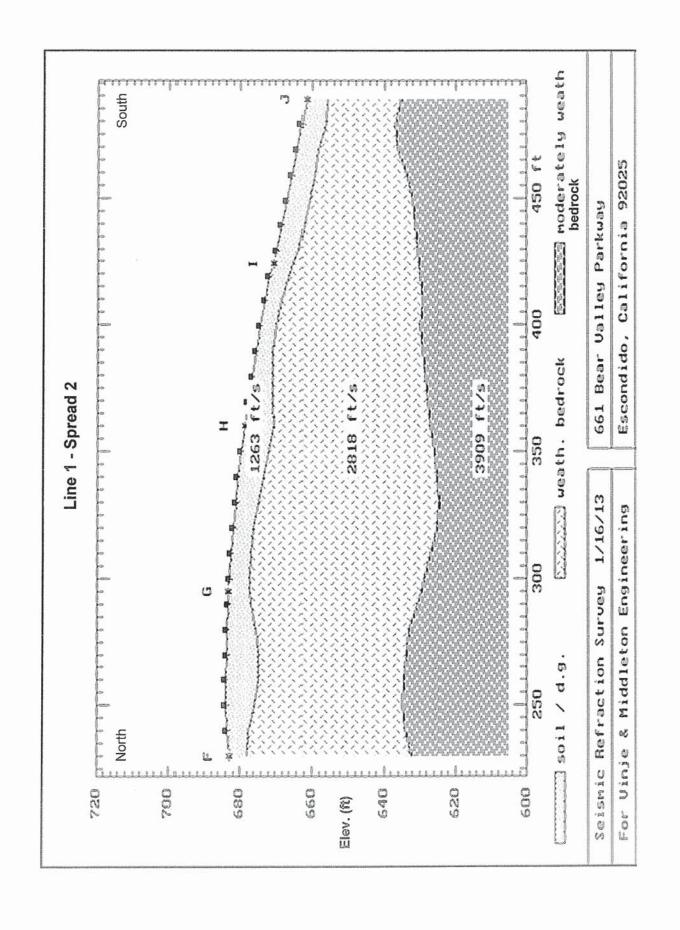






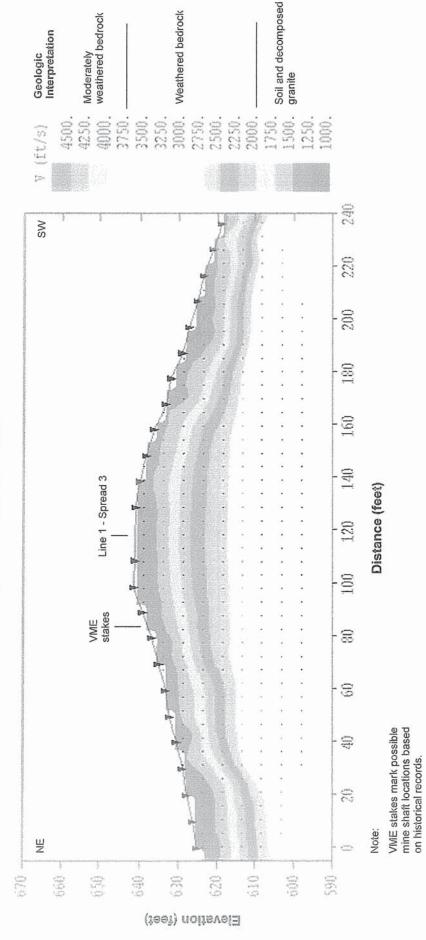






Appendix B

Velocity Gradient Models


Soil and decomposed granite 3250. 3000. Weathered bedrock weathered bedrock Geologic Interpretation Moderately 4500. 4250. 4000. 1350. 1500. 1250. 3750. 3500. 2350. 2500. 2000. V (£t/s) 240 SW 220 200 180 4 . 4 . 4 . 4 160 140 Distance (feet) 120 VME stake (10 ft. east) 100 80 09 40 8 Note: 岁 628 069 999 089 646 Elevation (feet)

VME stakes mark possible mine shaft locations based on historical records.

Velocity Gradient Model -- Line 1 - Spread 1

Soil and decomposed granite Weathered bedrock Moderately weathered bedrock Geologic Interpretation 3700. 5200. 3100. 2800. 2500. 4600. 4000. 1900. 1500. 1300. 2200. V (ft/s) 240 SW 220 200 180 160 140 Distance (feet) driveway 120 100 VME stake -8 09 VME stakes mark possible mine shaft locations based on historical records. # 3 Note: N 580 530 250 986 650 040 620 610 600 (1991) noitsvelB

Velocity Gradient Model -- Line 6

Velocity Gradient Model -- Line 8

Soil and decomposed granite Weathered bedrock weathered bedrock Geologic Interpretation Moderately 4500. 3500. 3250. 3000. 1750. 3750. 2750. 2500. 2250. 1250. 4000 2000. V (ft/s) 240 SW 220 200 180 160 140 Distance (feet) 120 VME stake 100 8 09 VME stakes mark possible mine shaft locations based on historical records. 40 20 Note: 빌 (E) (E) 650 973 636 590 620 (jeet) notisvel3

Velocity Gradient Model -- Line 9